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We present an algorithm for numerically computing an absolutely continuous 
invariant measure associated with a piecewise C 2 expanding mapping S:/2 ---, 12 
on a bounded region ~2 c R Jr. The method is based on the Galerkin projection 
principle for solving an operator equation in a Banach space. With the help of 
the modern notion of functions of bounded variation in multidimension, we 
prove the convergence of the algorithm. 
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1. I N T R O D U C T I O N  

In physical science, many problems are closely related to that of the 
existence and computa t ion  of invariant  measures for nonsingular  trans- 
formations on measure spaces. ~51 For  one-dimensional  piecewise C 2 and 
stretching mappings of an interval, the existence of an invariant  measure 
which is absolutely cont inuous  with respect to the Lebesgue measure has 
been proved by Lasota and Yorke. 1~6~ 

For  the computa t ion  of one-dimensional  absolutely cont inuous 
invariant  measures, Li 117) proved the convergence of Ulam's  piecewise 
constant  approximat ion method for the Lasota-Yorke class of piecewise 
C 2 stretching mappings on [0, 1]. Some high-order methods have been 
developed. ~6'7"~4~ A unified approach was proposed in ref. 4. Error estimates 
of these methods were given in refs. 2, 4, and 12. Furthermore,  motivated 
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by the convergence rate analysis, a systematic spectral analysis of 
Frobenius -Per ron  operators  was presented in ref. 5. 

For  piecewise C 2 and expanding mappings  in R N, a general existence 
theorem was obtained in ref. 1 I. The theorem states that  under mild condi- 
tions on the parti t ion of the region / 2 c  R N, there exists an absolutely 
continuous invariant measure for S: 12 ~ / 2  if the derivative of  the inverse 
mapping  S,:-t(x) of each piece St of  S has norm less than some tr such that 
o~ = tr( 1 + 1/a) < 1 for some a > 0 at every point x in its domain.  

Recently the convergence of Ulam's  method was proved for the 
Jablonski class of  mappings  on an N-dimensional  cube. I~ For  general high- 
dimensional piecewise expanding t ransformations that  satisfy the condi- 
tions in ref. I 1, a continuous piecewise linear Markov  finite approximat ion  
method was developed ~8~ to compute  absolutely cont inuous invariant 
measures, and its convergence was established with the help of  the modern  
notion of bounded variation. In this paper,  we introduce a general high- 
order projection method.  Compared  with the Markov  finite approximat ion  
method,  our new algorithm employs piecewise polynomials  which are not 
necessarily continuous to approximate  the density of  the invariant measure,  
which is in general only an LJ-function. 

After giving some preliminaries in the next section, we present the 
first-order projection method in detail in Section 3. The outline of  the 
second-order method is given in Section 4, and we conclude in Section 5. 

2. F R O B E N I U S - P E R R O N  O P E R A T O R S  A N D  THE 
PROJECTION M E T H O D  

Let ~ be a bounded region in R N with piecewise C 2 boundary.  
Throughout  the paper  we assume that  S: ~2 ~ O is a piecewise C 2 expanding 
mapping,  i.e., there is a constant  0 < o  < 1 and a parti t ion {/2] ,..., Q,} of~2 
such that for i =  1 ..... t, ~2 i has a piecewise C 2 boundary,  and the restriction 
Si = S[~, of S on ~2,. is a C 2 mapping  which can be extended to the closure 
of~2~ as a C 2 mapping  satisfying l iDS7 ~ [I ~ or, where D S 7  ~ is the derivative 
matrix of  S,: -] and I['][ is the Euclidean matrix norm. S need not be 
continuous at a point on the boundary  of Q~. It was shown in ref. 11 that  
under the above assumptions,  if ct - a(1 + l /a)  < 1 for some constant  a > 0, 
then there exists an absolutely continuous invariant measure under S. 

The opera tor  Ps:  L ~(f2) ~ L J(f2) defined by 

A P s f  dm = Is_,~A I f dm (1) 

for every measurable subset A of ~2 is called the Froben ius -Per ron  
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operator associated with S, where m is the Lebesgue measure on I2. It is 
well known 1151 that for f~>0 and I l f l l = l ,  the absolutely continuous 
measure 

p(A)=fAfdm V measurable sets A c O  

is invariant under S if and only i f f  is a fixed point of Ps, i.e., P s f = f .  
Here the invariance of the measure p (under S) means that p(S-'(A))= 
p(A) for every measurable set A c~2. 

Some basic properties Ps are listed below without proof. For more 
detailed discussion of Ps, see the monograph of Lasota and Mackey [ 15]. 

Proposi t ion 2.1. (i) Ps is a positive operator that preserves the 
L ' -no rm of nonnegative functions. Thus Ps is a Markov operator. 

(ii) ~ a P s f d m = ~ a f d m  for f eL l (12) .  

(iii) Let r > 0  be an integer. Then Ps,=(Ps) r. 

(iv) If P s f = f ,  then P s f + = f  + and P s f - = f  -, where 
f +  = max{f ,  0} and f -  =max{  - f ,  0}. 

Now we give a brief introduction to the Galerkin projection principle 
for solving an operator equation in a Banach space. Let E be a Banach 
space. Suppose M and N are closed subspaces of E such that E = M O  N. 
We can define the projection Q: E--, E of E onto M along N as follows: 

Qx=y  if x = y + z ,  y~M,  z e N  

Now, let E and F be two Banach spaces and let T : E - - * F  be a 
bounded linear operator. We want to solve the operator equation 

Tx= y 

where y e F is fixed. The Galerkin projection method proceeds as follows. 
Choose two sequences of finite-dimensional subspaces E,, and /7, of E and 
F, respectively. Let Q, be a sequence of projections from F onto F,,. In E,  
we look for x ,  such that 

Q,, Tx,, = Q,, y 

Under a basis of E.  and a basis of F . ,  the above equation is basically a 
system of algebraic equations. Thus, we can use numerical linear algebra to 
find approximate solutions to the original problem. 

Before ending the section, we introduce the concept of functions of 
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bounded variat ion in high dimensions that is essential in the convergence 
proof  of our method.  In what  follows, Ilfll = Ilfllo.l=j~lfl  dm is the 
L I -no rm o f f ~  Ll(12), and Ilgllo, o~ = ess sup{ Ig(x)l: x e f2} is the L~176 
of g ~ L~(s"2). The following definition is given in ref. 10. 

Definition 2.1.  Let t 2 c R  N be an open set and let f E L l ( f 2 ) .  The 
number  

V(f; ~) ~ I~ IlOfll d m =  sup { Ia  f d i v g d m :  gE Col(12; RN), Ilgllo, o~, ~ 1} 

is called the variat ion of f over I2, where div g=Z,.u=~ Ogi/Ox~ and 
Co~(f2; R u) denotes the space of continuously differentiable mappings  from 
g2 into R N having compact  support.  If  V(J~ g2) < ~ ,  then f is said to have 
bounded variat ion in f2. We let BV(g2) be the Banach space of all functions 
in L]((2) with bounded variat ion under the norm [Ifllnv = Ilfll + V(J~ s'-2). 

3. THE PIECEWISE LINEAR P R O J E C T I O N  M E T H O D  

In this section we look for approximate  solutions of  the 
Frobenius -Per ron  opera tor  equations P s f  = f in spaces of  piecewise linear 
functions, using the projection technique. This numerical scheme is a 
generalization of the idea introduced in ref. 7 to the multidimensional case. 
For  simplicity of  presentation, we assume that  t'2 is the unit square 
[0, 1 ]2E R 2. However ,  the basic idea behind our  approximat ion  method 
can be easily extended for general region O c R u. 

Let n > 0  be an integer, and let h=l /n  and x~=yi=ih/n for 
i = 0 , 1  ..... n. Divide g2 into n 2 equal subsquares g2 0 - = 1 i x l  i =  
[Xi_l, Xi] X [Yj - - l ,  Yj] for i , j= 1 ..... n. Thus we have a uniform rectangle 
parti t ion T h of 12. 

Let Ah be the space of piecewise linear functions corresponding to the 
above partition. Then A h is a 3n2-dimensional linear subspace of LI(12). 
Note  that  Ah c L~(s Let XA be the characteristic function of A. Then 

{ Z~,j 2 ( x - x , _  ~)Z~0 2 ( y -  yj_  ,)Yt2,j ) 
hZ , h3 , h3 �9 i =  1 ..... n ; j =  1 ..... n 

is a basis of Ah. Let it be ordered as {q~k} ~= ] with 1= 3n-" in a natural  way. 
It is obvious that each ~0 k is a density, i.e., r i>0 and II~0kll = 1, with some 
t2 0. as its support.  

Define Qh: LI(g2) ~ Zlh by 

( f - - Q h f ,  g) = 0 ,  VgsAh 
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where ( f ,  g )  = I a fg dm for f ~ L ~(/2 ) and g e L ~(/2 ). Then limh - o Q h f = f 
for all feL ' ( /2)  and IIQhll is uniformly bounded. Let Ph=Qj, oPs; then 
Ph: L ~(/2) --* At, satisfies 

f aPh fdm=Ia fdm ,  Vf~ Ll(/2) 

Now we show that Ph has a nonzero fixed point in Ah. 
Let the /x  I matrices G and M be defined as 

G = (gjk), gjk=(Ph(Pk,~Oj), Vl<~j,k<<.l 

and 

M= (mjk), mjk = (~Ok, ~Oj), 

Then, by the definition of  Qh and Ph, we have: 

Vl<~j,k<~l 

L e m m a  3.1.  Ph has a fixed p o i n t f h = ~ = j  ~k~O~.edh if and only if 
G~=M~ for some ( = ( ~ l  ..... (l) r~Rt. 

Lemma 3.2. There exists a nonzerofhedh such that Phfh=fh. 

Proof. Since the constant function l e Ah, there exists a (nonnegative) 
vector a = (a] ..... at)re R I such that 

t 

E al,'~k = l 
k = l  

Now let b =  Gra-Mra.  Then the kth component  of  b is given by 

t / 

bk = ~. (P,,(Pk, r a j - -  ~ (r (Pj) aj 
j=l  j = l  

• ) ( •  / = Phgk,  aj~oj -- gk,  ajtpj 
j = l  j = l  

= Ph~ok, l>--(~ok, l>=faPt, q~kdm--facpkdm=O 

Since the transpose of G - M  has a nontrivial kernel, the same is true for 
G - M .  Hence, there exists a nonzero ~ e R t such that G~ = M~. Q E D  

To obtain the convergence of  the projection method, we need the 
following result (see, e.g., ref. 3). 
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I . emma 3.3. There exists a constant C that is independent of the 
partition T h such that 

[IQhf--f l l  <~ Ch f IJgrad fll dm VfE WL'(~Q) (2) Jo 

Now for the piecewise C 2 and expanding S: t2 ~ g2, it was proved in 
ref. 11 that there are two constants ct and fl such that for anyfEBV(g2) ,  

V(Psf; g2) ~o~v(f', K2) + fl Ilfl[ (3) 

I . emma 3.4. There ia a number 2 independent of S and h such that 
if S:/2--* s'2 is piecewise C 2 and expanding such that 20r < l, then for any 
sequence of fixed points {fh} of Ph with Ilfhl[ = 1, the sequence { V ( A ;  [2)} 
is uniformly bounded. 

Proof First of all, we show that there exists a constant 2 that is 
independent of h such that 

V(Q,,f;O)<~2V(f;12), Vf~BV((2)  (4) 

Let f e  BV(I2). By Theorem 1.17 in ref. 10, there exists a sequence {fj} in 
C~ such that 

lim [ I f j - f l l  = 0  (5) 
j ~  oo 

and 

lim In Ilgrad fill dm = V(f; t2) (6) 
. / ~  r 

Since Ilah[I is uniformly bounded, (5) implies that l imj_~  IIQhfj--QhflJ 
=0.  Hence, from Theorem 1.9 of ref. 10, 

V(Q h f; g2) <<. lim inf v( Qh fj ;  I2) (7) 
. / ~ o @  

Define Wh = C~(I2; R 2) by 

Wh = {ge  Co~(/2; RE): gIoo E Q2.3 x Q3.2, i, j =  1 ..... n} 

where Qp.q = span { x;yY: 0 ~ i ~< p, 0 ~< j ~< q}. Then there exist 
rch: C~(12; R z) ~ Wh and a constant C' that is independent of the partition 
Th of ~2 such that (cf. ref. 9, pp. 104-111, 154-155) 

I d i v ( g - r r h g ) f d m = O ,  Vf~Ah (8) 
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and 

Ilzchgllo.o=~C' II gllo . . . .  Vg~C~([2; R2) (9) 

Now from (8), we have 

f Q , , f j d i vgdm=- f  gradfjn,,gdm+~ (Q,,fj-fj) divrc,,gdm 

Thus, from (2), (9), and the inverse estimate 13~ that there is a constant C 
such that 

Ildiv rcj, gll0.~ ~< Ch -1 life/, gllo.~, 

we can find a constant 2 that is independent of h and f~ BV(I2) such that 

~a Q,,fj div g din] ~<2 ~ Ilgrad fill dm Ilgllo.~ 

which implies that 

V(Qhfj; f2)=sup {fa Q,,fjdiv g: g ~ C~(12; RZ), [Igllo.o~.<<. l } 

~<2 Ia Ilgrad fjII dm (10) 

Combining (6), (7), and (10), we obtain the conclusion. 
Finally, combining (3) and (4), we have 

V(f~,; g2) = V(PhA;12)<~2V(Psfh;g2)<~2c~V(fj,;12)+2fl 

Since 2a < 1, we obtain 

V(fh; [2) <~ 1 - 2~ 

Thus, { V(fh; 12)} is uniformly bounded. QED 

Now we can prove the convergence result of the projection method. 

Theorem 3.1. Suppose S: 12--.I2 is piecewise C z and expanding 
such that ; ta< 1. Let {fj,} eAh be such that Phfh =f~, and Ilfhll = 1. Then 
there exists a subsequence {Lk} = {fh} such that fhk converges to a fixed 
point of Ps- If in addition Ps has a unique invariant density f ,  then we can 
choose fj, such that limb_ o fJ, = f Moreover, if only 0t < 1, then a sequence 
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of functions can be constructed from piecewise linear functions which 
converge to a fixed point of Ps. 

Proof. Suppose first 2~ < 1. Then by Lemma  3.4, the sequence {fh} 
is bounded in BV(~) .  Theorem 1.19 of ref. 10 implies that  there is a 
subsequence {fh~} c {fh} which converges to some g in L]([2). Since 

I l e s g -  gll ~< IIg--fJ,  kl[ + Ilfh,-- Oh,~ 

+ II Qhk ~ PsfJ,, - Qhk ~ Ps  g II + II QI, k ~ Ps  g - Ps  gll 

noting that  Qhk ~ Psfhk =fh ,  and [IQhk ~ esll is uniformly bounded,  we see 
that P s g  = g. Obviously [Ig[I = 1. 

If Ps  has a unique fixed density, then (iv) of Proposi t ion 2.1 implies 
that g = f  or g = - f .  The above argument  shows that  any convergent 
subsequence of {fh} must  converge to either f or - f .  Hence, we have 
l imh_o f~, = f  if we put an appropr ia te  sign to each fh.  

Now suppose ct < 1. Since in (3), 0~ for S becomes ct ~ for S ~ because of 
(iii) of  Proposi t ion 2.1, one can find an r >  0 such that  for 09 = S r instead 
of S, the condition of Lemma  3.4 is satisfied. Let ~'"~ of unit length be a Jh  
fixed point of Ph(o~) in Ah. Define 

r--I 
= _  p ~/ c~,,~ 

gk E ( sI Jhk r j = o  

where fJ, k is a convergent subsequence of {fj,} from the proof  of the first 
part  of the theorem. Then gk converges to 

] r - I  

g = -  ~ ( P s ) J f  ' '  
r j = l  

w h e r e f  ~n is a fixed point of  P,,,. This g is a fixed point of  Ps. In fact, from 
(iii) of Proposi t ion 2.1, 

1 
P s g  = -  { P s f " +  "'" +(Ps)~ f ''~ = g  Q E D  

r 

4. THE PIECEWISE Q U A D R A T I C  PROJECTION 
M E T H O D  

Based on the discussion in the previous section, we outline the 
piecewise quadrat ic  polynomial  projection method in this section. Let 
[ 2 c R  2 be the unit square and T h = { Q v : i , j = l  ..... n} the rectangle 
parti t ion of • with mesh h as in Section 3. 

Let ~h be the space of piecewise quadrat ic  functions corresponding to 
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the above partition. Then Oh is a 6n2-dimensional linear subspace of 
LI(O) c~Lr~:'(O). A basis ofg2h is given by 

Xa,, 2( x - x i _  l) Xa,j, 2( y - 39- l) Xa,j 3(x - x i _  i) 2 Xt2,, 

h z , h 3 h 3 h 4 , 

4(x - xi_ I)(Y -- Yj- 1) Z ~  

h 4 

3 ( y -  y j _ l ) 2 X a o  1 
h4 " i = 1  ..... n ; j = l  ..... nj~ 

Let it be ordered as {~bk}~.= L with l =  6n 2 in a natural way. 
Now let Qh: L~(O) ~ Oh be defined by 

f - Q h f ,  g ) = O ,  V g ~ O h  

Let P h = Q h ~  �9 Then we can show as before that there exists a 
number 2 independent of S and h. Moreover, we have: 

L e m m a  4.1. There existsfi ,~Oh such that Phfh=f~, and Itf~,ll = 1. 
Moreover, if 2r < 1, then the sequence { V(fh;  O)} is uniformly bounded. 

Now we state the convergence theorem for the second-order method. 

T h e o r e m  4.1.  Suppose S: O--* s is piecewise C 2 and expanding 
such that 2~< 1. Let {f;,} EOh be such that Phf;, =f/ ,  and ltft, Tl = 1. Then 
there exists a subsequence {fi,,} c {fh} such that fhk converges to a fixed 
point of Ps .  If in addition P s  has a unique invariant density f,  then 
essentially l imh_ofh = f  Furthermore, if only ct < l, then a sequence of 
functions can be constructed from piecewise quadratic functions which 
converges to a fixed point of Ps.  

5. CONCLUSIONS 

In this paper, we presented the piecewise linear and piecewise 
quadratic polynomial projection methods to numerically solve the fixed- 
point problem of the Frobenius-Perron operator Ps  associated with a 
high-dimensional nonsingular transformation S. For piecewise C 2 and 
expanding mappings S for which the existence of absolutely continuous 
invariant measures is guaranteed, we proved the convergence of the 
method, using the concept of bounded variation for functions of multi- 
variables. 

We only described the method for the unit square in plane for the sake 
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of simplicity of presentation. The idea of the method can be easily extended 
to a general region of high dimension. Moreover, the convergence result 
can be established in the same way. 

Since in general the fixed density of Ps is only an L~-function, the 
projection method using noncontinuous finite elements seems a more 
natural approach than the Markov approximation method with 
continuous finite elements used in ref. 8. On the other hand, for the 
Markov approximation method, the approximate fixed points fh are 
guaranteed to be nonnegative, but it is not known whether this property is 
true for the projection method. 
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